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In this paper we study numerically an ensemble of one-parameter maps driven by fractal noises. There are
two accessible cases of on-off intermittency in the system for different values of parameters. The first one,
corresponding to the loss of stability of the fixed point, has a power law laminar phase distribution of exponent
H22, while the second one, due to the instability of the synchronous motion of the ensemble, has a distribu-
tion depending on the form of the map. A simple analysis of the mechanism of this difference is also given.
The distribution for the case far from the critical state is reported.@S1063-651X~96!09210-0#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Since the discovery of chaos in the Lorenz model, mecha-
nisms of chaos in deterministic system have been carefully
studied. It is well known that external noise is not necessary
for the occurrence of chaos. But fluctuations, such as thermal
or quantum noise, are intrinsic for real systems. So the study
of random systems is of importance. Recently, a new mecha-
nism of intermittency for random systems has attracted much
interest@1–6#. It is the ‘‘random’’ switch of two states. One
is a nearly constant state, named the ‘‘off’’ state; the other is
a large amplitude burst, named the ‘‘on’’ state. This was first
reported by Platt, Spiegel and Tresser in a set of coupled
differential equations. A simpler model of a one-parameter
random driving map is studied in detail by Heagy, Piatts and
Hammel. Analytical results of the asymptotic23/2 power-
law distribution of the laminar phase is given there. On the
other hand, Yu, Ott, and Chen@2# have studied a class of
two-dimensional maps with randomly varying parameters.
During the iteration, the size of an attractor can undergo a
form of intermittency behavior that is similar to on-off inter-
mittency. Yang and Ding found that in a random driving
uncoupled map lattice with the local function of a logistic
map, both phenomena can be observed@4#. Identical scaling
relations imply that they are just two manifestations of on-off
intermittency. All these works are for normal random driv-
ing. Ding and Yang@6# considered the system driven by the
noise generated by a fractal Brownian motion~FBM! or the
so-called anomalous diffusion@8–11#. The laminar phases
had a power-law distribution of exponentH22, whereH is
the Hurst exponent satisfying 0,H,1 @9#. The past work
on random driving systems is just the particular case of
H51/2.

In the present paper, it is shown that, for the system
driven by fractal noise generated by FBM, the laminar phase
distribution of the two manifestations of on-off intermittency
has a different behavior. One is map dependent, while the
other is not. And it is reported that for the case far from the
critical state the laminar phases still have a perfect power-

law distribution. The frame of the present paper is as fol-
lows: In Sec. II we give the model studied and show the
numerical results of different behaviors of the two manifes-
tations. In Sec. III the system is linearized near the two zero
points of the Lyapunov exponent. A simple analysis of the
difference is given there. Section IV is a short summary.

II. NUMERICAL RESULTS

A. Model

The maps we study are of the form

yn11
~ i ! 5znf ~yn

~ i !!, ~2.1!

wherei51,2, . . . ,L, labels thei th particle~i.e., initial con-
dition!, and

f ~y!5ye2by, ~2.2!

zn5axn , ~2.3!

with xn a discrete-time noise generated by a FBM. A total
numberL of initial conditions in interval@0,1# with uniform
distribution are taken. And the control parameterszn at cer-
tain steps of iteration are the same for every initial condition.
It means that all the initial conditions iterate with the same
function.

Here we use the one-dimensional map below to get a
deterministic FBM@6#

g~R!5HR211a~R2m!z, m<R<m11/2

R112a~m112R!z, m11/2<R<m11,
~2.4!

wherem is an integer and exponentz specifies the properties
of the diffusion. The mean square displacement^Rn

2& is ex-
pressed as@9#
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^Rn
2&;H n2 z>2, n321/~z21!

3/2,z,2 n 1,z,3/2.
~2.5!

So the Hurst exponent is

H5H 1 z>2
3

2
2

1

2~z21!

3/2,z,2 1/2 1,z,3/2.

~2.6!

The noisexn in Eq. ~3! is

xn5eRn2Rn21. ~2.7!

And throughout this paper, the parameters take the values
b52.0, z51.6. Thus we have a driving fractal noise of
Hurst exponentH52/3.

B. Laminar phase distribution

Chaotic or periodic motion in a single map is character-
ized by a positive or negative Lyapunov exponent defined by
@2#

l5 lim
N→`

1

N (
n50

N21

lnu f 8~yn!u. ~2.8!

For uncoupled map lattices, the Lyapunov exponents are the
same for all the sites. Numerical calculation for a single map
shows that~see Fig. 1! with increasing values ofa, the
Lyapunov exponentl increases gradually to zero, and then
decreases to a minimum, but it will eventually increase be-
yond zero. So there are two zero points for the Lyapunov
exponent corresponding to two critical valuesa1.1.0 and
a2.12.75. The two critical points ofa divide thea axis into
three intervals. Numerical simulation shows that in each in-
terval there is a state that is different from those in the other
two.

The first critical point~with a5a1) is just the onset value
for ‘‘on-off intermittency’’of signal yn . This phenomenon

can be observed even for a single map as studied in Refs.
@1,6#. However, for different initial conditions even with val-
ues of a beyond this critical point, the motion of a large
number of particles in the system are always synchronous,
though the motion of a single site is random. The negative
Lyapunov exponents imply that after some time all the par-
ticles must clump at a single point. From the analytical study
in Ref. @6#, the laminar phases show a power-law distribution
with an exponential decay at large size

Ly~n!}nH22exp~2n/ny!. ~2.9!

The numerical study fora51.01 is shown in Fig. 2. The
threshold from the laminar phase is fixed att50.1. The solid
curve is a numerical calculation of Eq.~9! with Hurst expo-
nentH52/3 and a cutoffny51160. The agreement between
them is obvious.

Near the other critical pointa5a2, the behavior of the
particle distribution is similar to that of Refs.@2,4#. For ex-
ample, witha512.75, we may obtain a snapshot attractor by
sprinkling a large number of initial points uniformly in the
interval@0,1#, then iterating each point with the map~1! for a
large number of iterations. The size of the snapshot attractor
sn at timen is defined@2#

sn5F 1L (
i51

L

~yn
~ i !2 ȳn!

2G1/2, ~2.10!

whereȳn is the average ofyn
( i )

ȳn5
1

L (
i51

L

yn
~ i ! . ~2.11!

Just beyond the critical valuea2, the intermittency of the
signal sn is observed. Figure 3 shows the intermittency of
sn on a linear scale. It can be seen thatsn is truly of an on-off
nature. Figure 4 shows the plot of laminar phases distribution
from the numerical simulation of map~1! with a512.75. A
total of 1 000 000 intervals of laminar phase are used to con-

FIG. 1. The Lyapunov exponentl for a single map with
0,a,15, the two zero points area151.0 anda2512.75.

FIG. 2. The asymptotic distributionLy(n) of laminar phases
with a51.01. The former 100 000 steps of iteration is cut down. A
total of 1 000 000 intervals of laminar phase are used to construct
the distribution. The solid curve is the numerical calculation of Eq.
~9!. The cutoff of exponential decay isny.1150.
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struct the distribution. The threshold from a laminar phase is
fixed at t51022. The distribution is asymptotically of the
power-law form. But the numerical fit gave an exponent
21.5, not the expected oneH22 @6#.

Occasionally supercritical distribution of laminar phases
was obtained. Fora513.75, far from the critical state, the
numerical result is shown in Fig. 5. The threshold from a
laminar phase is alsot51022. A total of 100 000 intervals
of laminar phases were used to construct the distribution.
Although the system is far from the critical state, i.e., the
state with a zero-value Lyapunov exponent, the laminar
phases still have a perfect power-law distribution. And the
numerical fit shows that the exponent is22.35. It is obvious
that this can not be explained by theH22 theory of Ding
and Yang@6# because the exponent is not in the interval
@-2,-1#.

And it should also be pointed out that even the distribu-
tion for a512.75 has a deviation from power law for the
short length laminar phases. Much careful investigation~see
Fig. 6! showed that for short length laminar phases it is still
of power-law function form but with an exponent22.35. It
should be noticed that this is just the same exponent for the
super-critical casea513.75.

III. DISCUSSION

In this section we will analyze why the distribution near
the second critical point is not of exponentH22.

Near the first critical pointa151.0, the system stays at
laminar phase for long periods of time. The value ofy is so
small at laminar phase that the map can be linearized@1,6#

yn115znyn ~3.1!

and taking the logrithm gives

ln yn115 lnzn1 ln yn . ~3.2!

FIG. 3. The size of the snapshotsn vs the iterate stepsn on a
linear scale witha512.75. The dashed line is the threshold
t50.01.

FIG. 4. The asymptotic distributionLs(n) of laminar phases
with a512.75. The former cutoff is 100 100 steps. The distribution
is constructed by 100 000 intervals of laminar phase. The solid line
is of slope21.5.

FIG. 5. The asymptotic distributionLs(n) of laminar phases
with a513.75. The former cutoff is 100 000 iteration. And 100 000
intervals of laminar phase are used. The solid line is of slope
22.35.

FIG. 6. The enlargement of part of Fig. 4. The solid line is of
slope22.35.
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Substituting Eq.~3! and Eq.~7! into Eq. ~13! and using that
ln a150.0, one obtains

ln yn112 ln yn5Rn2Rn21 . ~3.3!

If one regards lnyi as thei th position of a random walker,
the walk is just a FBM of the same Hurst exponent with
$Rn%. So the laminar phase distribution is only determined by
H but does not depend on the form of map~1!.

For the case ofa2512.75, for simplicity only two sites
were considered

yn11
~1! 5znf ~yn

~1!!, yn11
~2! 5znf ~yn

~2!!. ~3.4!

Denoting the difference between the two sites as
dyn5yn

(1)2yn
(2) employing the Taylor expansion, one gets

dyn115zndynf 8~yn!1O„~dyn!
2
…, ~3.5!

whose natural logarithm is

lndyn115 lnzn1 lndyn1 ln f 8~yn!. ~3.6!

This equation also describes an additive random walk. But
comparing it with Eq.~14!, it can be seen that the extra term
ln f8(yn) in Eq. ~17! is a function ofyn , i.e., it is map depen-
dent.

Denoting

Sn
~1!5(

i50

n

ln zi , ~3.7!

Sn
~2!5(

i50

n

ln f 8~yi !, ~3.8!

and

Sn5 ln dyn112 ln dy0, ~3.9!

one obtains

Sn5Sn
~1!1Sn

~2! . ~3.10!

From Eqs.~5! and ~14! and Eq.~18! one has

^Sn
~1!Sn

~1!&;n2H. ~3.11!

Assuming that

^Sn
~2!Sn

~2!&;n2H8, ~3.12!

one obtains

^Sn
2&;c1n

2H1c2n
2H85H n2H H.H8

n2H8 H,H8,
~3.13!

wherec1 andc2 are two constants. From this equation, we
know that depending on the map studied the laminar phases
distribution may either be of exponentH22 or not. Thus we
call this case a map-dependent one.

For a chaotic system, the last term acts as a chaotic walk.
And from the short time memory effect of a chaotic system,
we guess that the long time behavior of a chaotic walk can
be viewed as a normal random walk of exponentH51/2, so
we get the23/2 distribution for map~1! with a512.75.

The distribution fora513.75 is somewhat similar to the
case studied in Ref.@7#. It is probably the distribution of the
relaxation process from the burst state to the laminar phase.
A detailed analysis will be reported elsewhere.

IV. SUMMARY

A fractal noise driven random map lattice exhibiting on-
off intermittency was studied in detail. The Lyapunov expo-
nent was calculated for 0,a,15.0. Near the two zero points
of the Lyapunov exponent, two manifestations of on-off in-
termittency appeared. The laminar phase distributions for
two manifestations were different; one is map dependent,
and the other is not. And the power-law distribution for a far
from critical case is reported. We presume that, for random
modulated systems, whether described by a discrete map or
by a differential equation@1–6#, the Lyapunov exponent
spectrumlike Fig. 1 is typical. So the on-off intermittency
near the zero value of the Lyapunov exponent is also typical.
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